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Abstract. Motivated by the method for solving center-based Least Squares – clustering
problem [21, 39] we construct a very efficient iterative process for solving a one-dimensional
center-based l1 – clustering problem, on the basis of which it is possible to determine the
optimal partition. We analyze the basic properties and convergence of our iterative process,
which converges to a stationary point of the corresponding objective function for each choice
of the initial approximation. Given is also a corresponding algorithm, which in only few
steps gives a stationary point and the corresponding partition. The method is illustrated
and visualized on the example of looking for an optimal partition with two clusters, where
we check all stationary points of the corresponding minimizing functional. Also, the method
is tested on the basis of large numbers of data points and clusters and compared with the
method for solving the center-based Least Squares – clustering problem described in [21, 39].
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1 Introduction
Clustering or grouping a data set into conceptually meaningful clusters is a well-studied
problem in recent literature, and it has practical importance in a wide variety of applications
such as biology, classification of the plough-lands according to fertility, classification of insects
into groups, ranking of municipalities for financial support, pattern recognition, information
retrieval, text classification, machine learning, business, facility location problem, medicine,
understanding the Earth’s climate, psychology, and other social sciences [5, 10, 16, 28, 34, 38].

1This work is supported by the Ministry of Science, Education and Sports, Republic of Croatia, through
research grant 235-2352818-1034.

2Corresponding author: Rudolf Scitovski, e-mail: scitowsk@mathos.hr, telephone number: ++385-224-
800, fax number: ++385-224-801
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Classification and ranking of objects are becoming more and more interesting topics for
researchers, decision makers, state administrations, etc.

One of the most popular clustering algorithm is k-means. A classical version of k-means
uses the squared Euclidean distance. However, this distance measure is often inappropriate
[11]. Various other distance-like functions can be found in literature, like e.g. Bregman
distance [1, 21, 24, 39]. The k-means algorithm generally faces a nonconvex and nonsmooth
optimization problem. Therefore, a well-known disadvantage of this algorithm lies in its
strong dependency on the choice of the initial partition. A probabilistic approach to data
clustering, which is based on the Weiszfeld method for solving the Fermat–Weber location
problem is described in [2, 18].

A partition of the set A = {ai ∈ Rn : i = 1, . . . ,m} ⊂ Rn into k disjoint subsets
π1, . . . , πk, 1 ≤ k ≤ m, such that

k⋃
i=1

πi = A, πi ∩ πj = ∅, i 6= j, |πj| ≥ 1, j = 1, . . . , k, (1)

will be denoted by Π(A) = {π1, . . . , πk}, and the elements π1, . . . , πk of such partition are
called clusters in Rn.

If d : Rn × Rn → [0,+∞〉 is some distance-like function (see e.g. [21, 39]), then, by
applying the minimal distance condition (see e.g. [21, 37]), with each cluster πj ∈ Π we can
associate its center cj, defined by

cj = c(πj) := argmin
x∈Cj

∑
ai∈πj

d(x, ai), (2)

where Cj = conv(πj).
If we define an objective function F : P(A, k) → [0,+∞〉 on the set of all partitions

P(A, k) of the set A containing k clusters by

F(Π) =
k∑
j=1

∑
ai∈πj

d(cj, ai), (3)

then we define an optimal partition Π?, such that

F(Π?) = min
Π∈P(A,k)

F(Π).

Conversely, for a given set of centers c1, . . . , ck ∈ Rn applying the minimal distance
condition we can define the partition Π = {π1, . . . , πk} of the set A in the following way:

πj = {a ∈ A : d(cj, a) ≤ d(cs, a), ∀s = 1, . . . , k}, j = 1, . . . , k, (4)

where one has to take care that every element of the set A occurs in one and only one cluster.
Therefore the problem of finding an optimal partition of the set A can be reduced to the
following optimization problem

min
c1,...,ck∈Rn

F (c1, . . . , ck), F (c1, . . . , ck) =
m∑
i=1

min
j=1,...,k

d(cj, ai), (5)
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where F : Rkn → R+, and R+ is the set of all vectors in Rn with nonnegative components.
In general, this functional is not differentiable and it may have several local minima. Opti-
mization problem (5) can also be found in literature as a k-median problem and it is most
frequently solved by various metaheuristic methods [12] or by applying integer programming
[27, 32, 36]. An overview of papers in this area up to the year 2006 can be found in [31].

Kogan [21] and Teboulle [39] considered problem (5) in the Least Squares sense for the
distance-like function d(x, y) = ‖x−y‖2

2, x, y ∈ Rn. Generally, since the function f : Rk → R,
f(z) = max

j=1,...,k
zj can be approximated by a smooth function fε(z) = ε ln

k∑
j=1

exp
(
zj
ε

)
, instead

of solving problem (5), the following optimization problem is considered:

min
c1,...,ck∈R

Fε(c1, . . . , ck), Fε(c1, . . . , ck) = −ε
m∑
i=1

ln
k∑
j=1

e−
‖cj−ai‖

2
2

ε , (6)

and a simple iterative procedure is proposed for finding a stationary point of the differ-
entiable functional (6) as a sequence of a corresponding weighted arithmetic mean of the
data. Motivated by this, in our paper we construct an efficient iterative process for solving
a one-dimensional center-based l1 – clustering problem.

This paper is organized as follows. In Section 2, a one-dimensional clustering problem is
described and the main properties of the minimizing functional are given. Section 3 gives
the method for finding centers of clusters as stationary points of the minimizing functional,
analyzes convergence of the iterative process and gives an appropriate algorithm. An il-
lustrative example as well as testing and a comparison of the proposed method on a larger
number of data that should be grouped into a larger number of clusters are given in Section 4.
Measurements of the CPU time indicate high efficiency of the proposed method.

2 One-dimensional l1-clustering
Next, we consider a one-dimensional (n = 1) clustering problem, which also has many appli-
cations [18, 21]. An even more motivating reason for investigating such a special clustering
problem is a possibility of solving large and high-dimensional data clustering problems by
reducing them to one-dimensional ones (see e.g. Principal direction divisive partitioning in
[3, 22, 26]).

The set A = {ai ∈ R : i = 1, . . . ,m} ⊂ I ⊂ R, I = [α, β], has to be divided into k
disjoint subsets π1, . . . , πk, 1 ≤ k ≤ m, satisfying (1). In the present paper, we consider a
one-dimensional clustering problem using the Least Absolute Deviations (LAD) – optimality
criterion [33], by applying l1-distance function d(x, y) = |x − y|. The LAD principle is not
sensitive to the presence of outliers among the data, and the problem of finding an optimal
partition of the set A according to (5) reduces to the following nonconvex and nonsmooth
optimization problem

min
c1,...,ck∈I

Φ(c1, . . . , ck), Φ(c1, . . . , ck) =
m∑
i=1

min
j=1,...,k

|cj − ai|, (7)

where Φ : Ik → R+ is a continuous function. Similarly to [21, 39], instead of solving
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problem (7), we can solve the following optimization problem

min
c1,...,ck∈I

Φε(c1, . . . , ck), Φε(c1, . . . , ck) = −ε
m∑
i=1

ln
k∑
j=1

exp
(
−|cj − ai|

ε

)
, (8)

where Φε : Ik → R+. This is an optimization problem for the continuous objective function,
which is further neither convex nor differentiable. Thereby the objective function can have
a great number of independent variables (the number of clusters in the partition multiplied
by the dimension of data points (k · n)).

2.1 Properties of the functional Φε

In this subsection we are going to analyze some properties of the functional Φε. To simplify
the notation we denote by θ := (c1, . . . , ck). The next theorem relates the function Φ given
by (7) and Φε given by (8) (see also [39]).

Theorem 1. Let A = {ai ∈ R : i = 1, . . . ,m} ⊂ I ⊂ R, I = [α, β], be a given set, and let
Φε, ε > 0, be a functional given by (8).

Then for all θ = (c1, . . . , ck) ∈ Ik, the following inequalities hold

0 < εm ln
(
1 + (k − 1)e− 1

ε
(β−α)

)
≤ Φ(θ)− Φε(θ) ≤ εm ln k. (9)

Proof. Denote by ∆ij = |cj−ai|
ε

, i = 1, . . . ,m, j = 1, . . . , k. Without loss of generality, we
may assume that ∆i1 ≤ · · · ≤ ∆ik for all i ∈ {1, . . . ,m}. By definition of Φ and Φε, we find

Φ(θ)− Φε(θ) = ε
m∑
i=1

min
j=1,...,k

|cj − ai|
ε

+ ε
m∑
i=1

ln
k∑
j=1

e−
|cj−ai|

ε

= ε
m∑
i=1

ln
e∆i1

k∑
j=1

e−∆ij

 = ε
m∑
i=1

ln
k∑
j=1

e−(∆ij−∆i1). (10)

Furthermore, 0 ≤ ∆ij −∆i1 = 1
ε

∣∣∣|cj − ai| − |c1 − ai|
∣∣∣ ≤ 1

ε
|cj − c1| ≤ 1

ε
(β − α), which implies

k∑
j=1

e−(∆ij−∆i1) = 1 +
k∑
j=2

e−(∆ij−∆i1) ≥ 1 + (k − 1)e− 1
ε
(β−α) > 1,

hence the left-hand side of inequality (9) follows from (10). Finally, the right-hand side of
inequality (9) follows from (10) since ∑k

j=1 e
−(∆ij−∆i1) < k.

The functional Φε is continuous, and according to Theorem1, it is bounded below,

Φε(θ) ≥ Φ(θ)− εm ln k ≥ −εm ln k.

Therefore, since Ik ⊂ Rk is compact, Φε attains its global minimum.
The next lemma shows that the functional Φε, in addition to being continuous, satisfies

the Lipschitz property.
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Lemma 1. For all θ1, θ2 ∈ Ik there holds

|Φε(θ2)− Φε(θ1)| ≤ m ‖θ2 − θ1‖∞. (11)

Proof. Let θ1 = (c1, . . . , ck), θ2 = (d1, . . . , dk) ∈ Ik. Then

Φε(θ2)− Φε(θ1) = ε
m∑
i=1

ln
k∑
s=1

e−
|cs−ai|

ε∑k
j=1 e

−
|dj−ai|

ε

= ε
m∑
i=1

ln
k∑
s=1

e−
|ds−ai|

ε∑k
j=1 e

−
|dj−ai|

ε

e
|ds−ai|−|cs−ai|

ε

≤ ε
m∑
i=1

ln
k∑
s=1

e−
|ds−ai|

ε∑k
j=1 e

−
|dj−ai|

ε

e
|ds−cs|

ε

≤ ε
m∑
i=1

ln exp
(

max
s=1,...,k

|ds − cs|
ε

)
= m max

s=1,...,k
|ds − cs| = m ‖θ2 − θ1‖∞

Similarly, one can show that Φε(θ1)−Φε(θ2) ≤ m‖θ2− θ1‖∞, and therefore follows (11).

In what follows we will need the next lemma [4, 21].

Lemma 2. Let ψ : Rk → R be defined by ψ(x) = ln
k∑
s=1

e−xs. Then

(i) ψ is a convex function differentiable of class C∞(Rk).

(ii) For every pair of points x, y ∈ Rk the following holds:

ψ(y)− ψ(x) ≤
k∑
s=1

(xs − ys)µs, where µs = e−ys

 k∑
j=1

e−yj

−1

. (12)

Proof. (i) Recall the Hölder inequality for a, b ∈ Rk:

k∑
i=1
|aibi| ≤

(
k∑
i=1
|ai|p

)1/p ( k∑
i=1
|bi|q

)1/q

, p, q ∈ 〈0,+∞〉, 1
p

+ 1
q

= 1.

Given are two points x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ Rk, and substituting α = 1
p
, β = 1

q
,

the Hölder inequality for a = (e−αx1 , . . . , e−αxk) and b = (e−βy1 , . . . , e−βyk) gives

k∑
i=1

e−αxi−βyi ≤
(

k∑
i=1

e−xi
)α ( k∑

i=1
e−yi

)β
,

and taking the logarithm we obtain

ψ(αx+ βy) ≤ αψ(x) + βψ(y), α + β = 1.
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(ii) Since ψ is a convex function, (ii) follows from the gradient inequality

ψ(x)− ψ(y) ≥ (x− y)∇ψ(y).

Namely, since ∂ψ(y)
∂ys

= − exp(−ys)∑k

j=1 exp(−yj)
, s = 1, . . . , k, the gradient inequality readily implies

inequality (12).

3 A method for finding stationary points of the func-
tional Φε

Assuming that θ(t) = (c(t)
1 , . . . , c

(t)
k ) ∈ Ik is known, we are going to look for the next itera-

tion θ(t+1) = (c(t+1)
1 , . . . , c

(t+1)
k ), where c(t+1)

s is the weighted median of set A [35, 40]3 with
appropriate weights, i.e.

c(t+1)
s = med

(
w(s)(θ(t)),A

)
, s = 1, . . . , k, (13)

where w(s)(θ(t)) =
(
w

(s)
1 (θ(t)), . . . , w(s)

m (θ(t))
)
, and

w
(s)
i (θ(t)) =

exp
(
−1
ε
|c(t)
s − ai|

)
k∑
j=1

exp
(
−1
ε
|c(t)
j − ai|

) , i = 1, . . . ,m. (14)

Therefore, we can assume that each component c(t+1)
s of the next approximation θ(t+1) is

obtained as a solution of a weighted median problems [35, 40]

c(t+1)
s = argmin

ζ∈R
gs(ζ; θ(t)), s = 1, . . . , k, (15)

where
gs : R→ R+, gs(ζ; θ(t)) =

m∑
i=1

w
(s)
i (θ(t))|ζ − ai|.

Note that gs are continuous, but nondifferentiable convex functions.
Let g( · ; θ(t)) : Rk → R+ be a convex function defined by

g(θ; θ(t)) =
k∑
s=1

gs(cs; θ(t)), θ = (c1, . . . , ck). (16)

Because of convexity of the function g, there exists

θ(t+1) = (c(t+1)
1 , . . . , c

(t+1)
k ) = argmin

θ∈Ik
g(θ; θ(t)), (17)

where
c(t+1)
s = argmin

cs∈R
gs(cs; θ(t)) = med

(
w(s)(θ(t)),A

)
, s = 1, . . . , k. (18)

In that way we defined the iterative process associating a k-tuple θ(t) with a k-tuple θ(t+1).
3Generally, a median of the data can be some real number aν or any number from segment [aν−1, aν ]. In

that second case, under the term median of the data we imply the right edge aν of the interval.
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Remark 1. Because of the weighted median of data properties [40], we can suppose that
θ(t) ∈ Ak, i.e. c(t)

s ∈ A for all s = 1, . . . , k. This means that the iterative process (17)-(18)
can be defined in such a way that it searches for the minimum of Φε among points of the
set Ak.

Also, since the function Φ given by (7) is a piecewise linear function, it can always be
expected that its global minimum is attained at some point from Ak.

Furthermore, since Φ and Φε are symmetric functions, if θ? = (c?1, . . . , c?k) minimizes the
functional Φε, and θ̃ is an arbitrary permutation of θ?, then also θ̃ minimizes Φε. This means
that the iterative process could be restricted to the set

C = {(c1, . . . , ck) ∈ Ik : α ≤ c1 ≤ c2 ≤ · · · ≤ ck ≤ β}.

Note also that the iterative procedure (17)-(18) can be constructed as a Gauss-Seidel
iterative procedure, and in this way it accelerates the process even more.

3.1 Convergence of the iterative process
The following proposition can be checked easily.

Proposition 1.

(i) For every i = 1, . . . ,m and an arbitrary θ ∈ Rk, the sequence of weights w(s)
i (θ),

s = 1, . . . , k, satisfies 0 < w
(s)
i (θ) < 1.

(ii) For an arbitrary θ(0) ∈ Ik, the sequence
(
θ(t)

)
, defined by the iterative process (17)-(18),

remains in Ik, and hence it is bounded.

Proposition 2. Let θ(0) ∈ Ik be an arbitrary point, let the sequence
(
θ(t)

)
be given by the

iterative process (17)-(18), and let Φε : Ik → R be the functional given by (8).
If θ(t+1) 6= θ(t), then Φε(θ(t+1)) < Φε(θ(t)).

Proof. The function θ 7→ g(θ; θ(t)) defined by (16) is a convex function, and its minimizer is
θ(t+1). By our assumption θ(t+1) 6= θ(t), and therefore

g(θ(t+1); θ(t)) ≤ g(θ(t); θ(t)). (19)

On the other hand, by Lemma2, the function ψ : Rk → R given by ψ(x) = ln
k∑
s=1

e−xs , is
a convex function which satisfies

ψ(y)− ψ(x) ≤
k∑
s=1

(xs − ys)µs, µs = e−ys

 k∑
j=1

e−yj

−1

for all x, y ∈ Rk. In particular, for points x, y with components xs = 1
ε
|c(t+1)
s − ai|, ys =

1
ε
|c(t)
s − ai|, one gets

ln
k∑
s=1

e−
1
ε
|c(t)
s −ai| − ln

k∑
s=1

e−
1
ε
|c(t+1)
s −ai| ≤ 1

ε

k∑
s=1

(
|c(t+1)
s − ai| − |c(t)

s − ai|
)
µs, (20)
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where, cf. (14),

µs =
exp(−1

ε
|c(t)
s − ai|)∑k

j=1 exp(−1
ε
|c(t)
j − ai|)

= w
(s)
i (θ(t)).

Adding up (20) for i = 1, . . . ,m and multiplying by ε, using (19) we obtain

Φε(θ(t+1))− Φε(θ(t)) ≤
m∑
i=1

k∑
s=1

(
|c(t+1)
s − ai| − |c(t)

s − ai|
)
w

(s)
i (θ(t))

= g(θ(t+1); θ(t))− g(θ(t); θ(t)) ≤ 0. �

Furthermore, note that the functional Φε : Ik → R+ being Lipschitz (Lemma1) is ob-
viously locally Lipschitz, hence by [6, 7, 29] we have a well defined Clarke’s generalized
subdifferential

∂Φε(θ) = conv
{

lim
i→∞

(∇Φε(θi))T : (θi) sequence in S such that lim
i→∞

θi = θ
}
,

where S is a set of all points in Ik at which ∇Φε exists and it is bounded. In addition,
if a locally Lipschitz functional Φε : Ik → R+ attains its local minimum in θ? ∈ Ik, then
0 ∈ ∂Φε(θ∗). Conversely, every point θ̂ ∈ Ik for which 0 ∈ ∂Φε(θ̂) will be called a stationary
point of the functional Φε, where

∂Φε(θ) = {(u1, . . . , uk) ∈ Rk : us =
m∑
i=1

w
(s)
i (θ)σλ(cs, ai), λ ∈ [−1, 1]}, (21)

σζ(c, a) =
{

sign(c− a), c 6= a
ζ, c = a.

(22)

Theorem 2. Let θ(0) ∈ Ik be an arbitrary point, let the sequence
(
θ(t)

)
be defined by the

iterative process (17)-(18), and let Φε : Ik → R be the functional given by (8). Then

(i) The sequence
(
θ(t)

)
has an accumulation point.

(ii) The sequence
(
Φ(t)
ε

)
, where Φ(t)

ε := Φε(θ(t)), converges.

(iii) Every accumulation point θ̂ of sequence
(
θ(t)

)
is a stationary point of the functional Φε,

and it is obtained by the iterative process (17)-(18) in finitely many steps, i.e. there
exists a µ ∈ N, such that θ(µ+1) = θ(µ) = θ̂.

(iv) If θ̂1 and θ̂2 are two accumulation points of the sequence
(
θ(t)

)
, then Φε(θ̂1) = Φε(θ̂2).

Proof. (i) By Proposition 1, the sequence
(
θ(t)

)
is bounded, and therefore it has an accumu-

lation point.
(ii) By Proposition 2, the sequence

(
Φ(t)
ε

)
is monotonously decreasing, and by Theorem1,

the functional Φε is bounded below. Therefore, there exists a Φ?
ε , such that Φ?

ε = lim
t→∞

Φ(t)
ε .
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(iii) Since the sequence
(
Φ(t)
ε

)
converges and θ(t) belongs to a finite set Ak, there exists

a µ ∈ N such that Φε(θ(µ+1)) = Φε(θ(µ)). According to Proposition 2, we have

θ(µ+1) = θ(µ) = θ̂. (23)

Because θ(µ+1) = argmin
θ∈Ik

g(θ; θ(µ)), we conclude that 0 ∈ ∂g(θ(µ+1); θ(µ)), where ∂g(θ; θ(t))

is a Clarke’s generalized subdifferential of the function g at the point θ = (c1, . . . , ck),

∂g(θ; θ(t)) =
{

(u1, . . . , uk) ∈ Rk : us =
m∑
i=1

w
(s)
i (θ(t))σλ(cs, ai), λ ∈ [−1, 1]

}
, (24)

where the function σζ is given by (22). From (23) it follows that

0 ∈ ∂g(θ(µ+1); θ(µ)) = ∂g(θ(µ); θ(µ))

=
{

(u1, . . . , uk) ∈ Rk : us =
m∑
i=1

w
(s)
i (θ(µ))σλ(c(µ)

s , ai), λ ∈ [−1, 1]
}
,

which coincides with the Clarke’s generalized subdifferential ∂Φε(θ(µ)) of the functional Φε

given by (21), at the point θ(µ). Therefore, θ(µ) = θ̂ is a stationary point of the functional
Φε.

(iv) Let
(
θ

(t)
1

)
and

(
θ

(t)
2

)
be two subsequences of the sequence

(
θ(t)

)
, such that θ̂1 =

lim
t→∞

θ
(t)
1 and θ̂2 = lim

t→∞
θ

(t)
2 . Since the sequence

(
Φ(t)
ε

)
converges, we have

Φε(θ̂1) = lim
t→∞

Φε(θ(t)
1 ) = lim

t→∞
Φε(θ(t)

2 ) = Φε(θ̂2). �

In the next corollary we discuss a special choice of the initial approximation.

Corollary 1. If θ(0) = (c(0)
1 , . . . , c

(0)
k ) is an initial approximation such that c(0)

1 = . . . = c
(0)
k ,

then the first step of the iterative process (17)-(18) will give the stationary point

θ̂ = (med(A), . . . ,med(A)),

where med(A) is the ordinary median of the set A = {a1, . . . , am}.

Proof. If c(0)
1 = . . . = c

(0)
k , then w(s)(θ(0)) =

(
1
k
, . . . , 1

k

)
∈ Rm, s = 1, . . . , k, and therefore

c(1)
s = med

(
w(s)(θ(0)),A

)
= med(A), s = 1, . . . , k.

Consequently, for every t = 0, 1, 2, . . . we have w(s)(θ(t)) =
(

1
k
, . . . , 1

k

)
∈ Rm, and

c(t+1)
s = med

(
w(s)(θ(t)),A

)
= med(A), s = 1, . . . , k. �

Note that because of Φ(c1, . . . , ck) ≤ Φ(cs, . . . , cs), for all s = 1, . . . , k, it is not real to
expect that the choice of an initial approximation as in Corollary 1 would give a global
minimizer of the functional Φε.
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3.2 One-dimensional l1-clustering algorithm
Theorem2 and Corollary 1 show that given an initial approximation θ(0) ∈ Ik, the iterative
process (17)-(18) always converges to some stationary point, which needs not be unique.
Therefore, special attention should be paid to the choice of the initial approximation of
centers θ(0) = (c(0)

1 , . . . , c
(0)
k ). It is shown that a very good initial approximation θ(0) can

be obtained in the following way. Sorted data a1 ≤ a2 ≤ · · · ≤ am should be divided into
k approximately equal subsets and for each of them the median should be calculated. In
most of the cases, with such initial approximation our algorithm gives the best partition in
only few steps. However, a question remains open as to how to test whether a stationary
point obtained by the iterative process (17)-(18) is a global minimizer of the functional Φε

[9, 14, 15, 17].
In addition, Theorem2 (iii) gives a criterion for terminating the iterative process (17)-

(18). Next, we give the following algorithm.
Algorithm 1. (One-dimensional l1-clustering)
Step 1: Input m ≥ 1, 1 ≤ k ≤ m, ε > 0, A = {ai ∈ R : i = 1, . . . ,m}, and choose an initial

approximation of centers θ(0) = (c(0)
1 , . . . , c

(0)
k );

Step 2: For all s = 1, . . . , k define an m-tuple w(s) with components

w
(s)
i =

exp
(
−1
ε
|c(0)
s − ai|

)
k∑
j=1

exp
(
−1
ε
|c(0)
j − ai|

) , i = 1, . . . ,m;

Step 3: For all s = 1, . . . , k solve the weighted median problem4

gs(ζ) =
m∑
i=1

w
(s)
i |ζ − ai| → min

ζ
,

and set θ(1) = (c(1)
1 , . . . , c

(1)
k ), where c(1)

s = argmin gs(ζ);

Step 4: If θ(1) = θ(0), Go To Step 5; Else set θ(0) = θ(1) and go to Step 2;

Step 5: According to the minimal distance principle, define a partition Π = {π1, . . . , πk}
with centers c(1)

1 , . . . , c
(1)
k :

π1 = {ai ∈ A : |ai − c(1)
1 | ≤ |ai − c

(1)
l |, l = 1, . . . , k},

πj = {ai ∈ A \
j−1⋃
s=1

πs : |ai − c(1)
j | ≤ |ai − c

(1)
l |, ∀ l = 1, . . . , k}, j = 2, . . . , k.

Remark 2. Let us mention one possibility for the choice of the smoothing parameter ε > 0.
If we want a relative deviation Φ(θ(0))−Φε(θ(0))

Φ(θ(0)) between the function Φ and Φε in the initial
approximation θ(0) to be less than the number δ > 0 set in advance, then by using Theorem1
we obtain

ε ≤ δΦ(θ(0))
m ln k . (25)

4Mathematica-code for solving a weighted median problem is available at:
http://www.mathos.hr/seminar/Software.html
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4 Numerical examples
In order to visualize and analyze the problem and the proposed method from Section 3
further, we consider a simple example where the data set A consists of grade point averages
(GPA) of successful second year students majoring in mathematics at the Department of
Mathematics, University of Osijek (see Table 1).

Student s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
GPA 2.2 2.35 2.5 2.64 2.85 3. 3.25 3.35 3.4 3.54
Student s11 s12 s13 s14 s15 s16 s17 s18 s19 s20
GPA 3.54 3.7 3.72 3.72 3.8 3.85 3.95 4.05 4.15 4.2
Student s21 s22 s23 s24 s25 s26 s27 s28 s29 s30
GPA 4.2 4.3 4.41 4.41 4.54 4.6 4.6 4.65 4.84 5.

Table 1: Students’ GPAs

Example 1. We are going to split the set A of GPAs of successful students shown in Table 1
into two clusters with objective function Φε : I2 → R+, I = [2.2, 5] given by (8) for ε = 0.005.

Looking at the ContourPlot of the objective function Φε (see Fig. 1), one immediately
notices the symmetry property of the functional Φε: Φε(c1, c2) = Φε(c2, c1).

Application of our Algorithm1 to various choices of initial approximations θ(0) ∈ I2 re-
sults in four different stationary points θ̂i, i = 1, . . . , 4 (see Fig. 1), at which the functional Φε

assumes different values shown in Table 2.

i θ
(0)
i θ̂i Φε(θ̂i)

1 θ(0) ∈ I1 {(ϑ1, 4.41) ∈ R2 : ϑ1 ∈ [a8, a9] = [3.35, 3.4]} 10.51
2 θ(0) ∈ I2 (3.00, 4.20) 10.75
3 θ(0) ∈ I3 (2.85, 4.20) 10.84
4 θ(0) ∈ I4 {(ϑ1, ϑ2) ∈ R2 : ϑi ∈ [a15, a16] = [3.8, 3.85]} 18.086

Table 2: Stationary points of the functional Φε

1 2 3 4 5 6
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a) LAD approach
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I4

Figure 1: ContourPlot with stationary points of the objective function and the appropriate
area of choice of initial approximations
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Fig. 1a shows four different regions I1, I2, I3, and I4 for choosing initial approximations,
starting from which Algorithm1 yields the corresponding stationary points θ̂1, . . . , θ̂4, with
different values of objective function Φε. Note that region I4 is located around the bisector
of the first quadrant and as shown in Corollary 1, the iterative process always terminates
at the ordinary median of data a1, . . . , am, and in this way the global minimizer of the
functional Φε is not attained. It is natural that in order to choose the initial approximation
in the data region θ(0) ∈ conv(A) × conv(A). As the calculations show, the functional Φε

has four stationary points, and it attains its global minimum Φε(θ?) at any θ? = (θ?1, θ?2),
θ?1 ∈ [a8, a9] = [3.35, 3.4], θ?2 = a23 = 4.41, which is obtained by our Algorithm1, where
the initial approximation has to be chosen in region I1. As proposed at the beginning of
Section 3.2, if the data are divided into two equal parts in which the median is calculated,
we will obtain a very good initial approximation θ(0) = (3.5, 4.41), which belongs to region
I1. Moreover, it turns out that our Algorithm1 is very efficient, and it usually terminates
after only a few iterations.

For the purpose of comparison, as already mentioned, the same problem in [21] is solved
in the Least Squares sense by minimizing the functional (6) with d(x, y) = (x− y)2. In this
case the objective function is differentiable, and the corresponding iterative process again
yields four different stationary points θ̂1, . . . , θ̂4 (see Fig. 1b), but the initial approximation
region which yields the global minimum is a narrow strip, denoted by I1. In this case
the iterative process terminates when the distance ‖θ(t+1) − θ(t)‖2 becomes smaller than
some prescribed η > 0. From Fig. 1 it can be seen that the red area of choice of good
initial approximations for which the LAD algorithm converges to the global minimum of
the objective function is significantly larger than the analogous area for the LS algorithm.
Other numerical examples also point to this property. This means that the probability of a
random choice of a good initial approximation is significantly bigger in the case of the LAD
algorithm.

In the next example we will test the proposed method on a greater number of data that
should be grouped into a greater number of clusters. We will thereby compare calculation
performances of the algorithm described in [21, 39] for solving the optimization problem (6)
(LS algorithm) and the proposed algorithm for solving the optimization problem (8) (LAD
algorithm).

Motivation for this example originates from the problem of determining spatial clusters of
accidents along a continuous highway "New Jersey Turnpike" using different objectives [18].
Identifying such spatial clusters of accidents according to different objectives can provide
useful insights into various operational and safety issues. On the basis of the location of
these accidents we determine optimal clusters of accidents.

200 400 600 800 1000
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400

500

600

a) m = 10 000, k = 10

200 400 600 800 1000
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100

150

200

250

300

350

b) m = 20 000, k = 100

Figure 2: Centers and distribution of data points
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Example 2. Instead of historical crash data-sets we simulate random locations of accidents
in the following way. In interval I = [0, 1000] we choose k centers c1, . . . , ck ∈ I at random
(locations k of most frequently occurring accidents). The data set A containing m randomly
chosen real numbers from the interval I (locations m of observed accidents) is generated in
the following way:

(i) let i1, . . . , ik be randomly generated integers such that ∑k
s=1 is = m;

(ii) in the neighbourhood of the center cs we generate a set As, which consists of is
random real numbers from N (cs, 5) (variance σ2 = 5 is relatively very small, which enables
simulation of accidents in the immediate neighbourhood of centers c1, . . . , ck);

(iii) A = ⋃k
s=1As.

Fig. 2 shows centers and distribution of data points for two different choices of pairs (m, k).

First note that for each fixed i ∈ {1, . . . ,m}, there exists r ∈ {1, . . . , k}, such that
|c(t)
r − ai| ≤ min

s 6=r
|c(t)
s − ai|, and therefore the following holds

w
(s)
i (θ(t)) =



1

1+
k∑

j=1,j 6=r
exp
(
− 1
ε
(|c(t)
j −ai|−|c

(t)
r −ai|)

) if s = r,

exp
(
− 1
ε
(|c(t)
s −ai|−|c

(t)
r −ai|)

)
1+

k∑
j=1,j 6=r

exp
(
− 1
ε
(|c(t)
j −ai|−|c

(t)
r −ai|)

) if s 6= r,

from where

lim
ε→0+

w
(s)
i (θ(t)) =

1 if s = r,

0 if s 6= r.
(26)

This means that ε > 0 can always be chosen such that the data ai belongs to the closest
center. This means that in Step 3 of Algorithm 1 instead of solving the weighted median
problem for all data points, for every s = 1, . . . , k we can calculate the ordinary median only
of the data closest to the center c(0)

s .
By using previous considerations, we are going to split the set A into k clusters with

objective function Φε given by (8) (LAD approach) and with objective function Fε given
by (6) (LS approach) for ε = 0.005. The experiment will be conducted by taking m ∈
{1000, 5000, 10000, 20000} and k ∈ {5, 10, 25, 50, 100} (see [25]). Since the LS and LAD
algorithm converges to some local minima of the corresponding objective function, similarly
to [25] each algorithm will start running 10 times with some different random initializations
on each combinations of m and k.

Fig. 3 and Fig. 4 show movement of the CPU times in seconds for each running depending
on the number of centers and movement of the number of iterations for the LAD and LS
algorithm on a Pentium M processor with 1.4 GHz, respectively. The grey area in Fig. 3 shows
a range of the CPU time required for the execution of the LS algorithm for various choices of
initial approximations of centers. It can be noticed that, in contrast to the LAD algorithm,
the CPU time required for the execution of the LS algorithm depends heavily on the selected
initial approximation. As can be seen in Fig. 4, an increase in the number of clusters also
causes the number of necessary iterations of the LS algorithm to increase in relation to the
LAD algorithm. We will also try to estimate the error during reconstruction of centers
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Figure 3: CPU time (in seconds) necessary for the execution of the LAD and LS algorithm
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Figure 4: Number of iterations necessary for the execution of the LAD and LS algorithm
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Figure 5: Reconstruction error of centers for LAD and LS algorithm

by applying these two algorithms. Let θ = (c1, . . . , ck) be a vector whose components are
original centers, and let θ? = (c?1, . . . , c?k) be a vector whose components are estimated centers.
One possibility for error assessment is the Hausdorff distance between these two vectors [41],
which is given by the following formula

d(θ, θ?) = max
{

max
i=1,...,k

(
min

j=1,...,k
|ci − c?j |

)
, max
j=1,...,k

(
min
i=1,...,k

|ci − c?j |
)}

. (27)

In this way we would point out the maximum error that might occur. We believe that, for the
purpose of comparing the LAD and the LS algorithm, a better indicator is average distance
of each center c?i to the closest of centers c1, . . . , ck (see Fig. 5). A significant difference
between the LAD and the LS algorithm with respect to the reconstruction quality of centers
is not indicated.

5 Conclusions
In this paper we consider a one-dimensional data clustering problem in case outliers are to
be expected among the data. Usage of the Least Absolute Deviations-optimality criterion is
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proposed for solving this problem. By knowing a good initial approximation, the proposed
method can provide acceptable solutions in only a few steps. In case we do not have a
good initial approximation, what is usually recommended [25] are multi-run algorithms with
various random initializations, as done in Example 2. It is shown that the LS and the LAD
algorithm give approximately equally good reconstructions of centers. On the other hand,
numerous numerical experiments show a series of advantages of the LAD approach, such as:

(i) the probability of a random choice of a good initial approximation is significantly
larger in the case of the LAD algorithm (see Example 1);

(ii) increasing the number of clusters causes an increase in the number of necessary
iterations of the LS algorithm in relation to the LAD algorithm;

(iii) in contrast to the LAD algorithm, the CPU time required for the execution of the
LS algorithm depends heavily on the initial approximation;

(iv) generally, the LAD approach ignores outliers among the data [8, 33], while the LS
approach stresses them.

Solving the global optimization problem is a very common issue in recent literature. An
overview of papers published lately in this field can be found in [14]. One approach to
the solution of this problem by applying interval analysis can be found in [17]. Since our
functional Φε given by (8) satisfies a Lipschitz condition, global optimization methods for
Lipschitz functions [15, 30] are especially interesting, among which the most popular is the
DI(viding)RECT(angles) algorithm [13, 20].
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